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Abstract

Wireless Sensor Networks used in aquatic environments
for continuous monitoring are typically subject to phys-
ical or environmental factors that create anomalies in
collected data. A possible approach to identify and
correct these anomalies, hence to improve the quality
of data, is to use artificial neural networks, as done
by the previously proposed ANNODE (Artificial Neural
Network-based Outlier Detection) framework [1].

In this paper we propose ANNODE+, which extends
the ANNODE framework by detecting missing data in
addition to outliers. We also describe the design and
implementation of ANNODE+, implemented in Python
to exploit readily available machine learning (ML) tools
and libraries, also allowing online processing of incom-
ing measurements. To evaluate the ANNODE+ capa-
bilities, we used a dataset from a sensor deployment
in Seixal’s bay, Portugal. This dataset includes mea-
surements of water level, temperature and salinity. We
observed that our implementation of ANNODE+ per-
formed as intended, being able to detect injected anoma-
lies and successfully correcting them.
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1 Introduction
Nowadays, maintaining good water quality is important for
the aquatic fauna and flora and our life quality. It has become
a scarce resource, so it is crucial to monitor it. The Internet
of Things (IoT) and Wireless Sensor Networks (WSNs) play
an important role to monitor and inspect its quality. WSNs
are networks with dedicated sensors that detect specific phe-
nomenons or events. WSNs have been used to remotely
monitor many different aquatic environments such as rivers,
coasts, lakes and bays [1, 2].

Given that WSNs and their sensors are exposed to physical or
environmental factors that often create anomalies in collected
data, existing solutions can benefit from platforms for detect-
ing erroneous data or data omissions, to provide the required
reliability.

In this work, we propose the ANNODE+ framework, an arti-
ficial neural network-based framework for online data quality
assurance. Taking inspiration from ANNODE, an outlier

detection framework based on Artificial Neural Networks
(ANNs) previously proposed by Jesus et al. [1], we report
on the on-going design and implementation of a new, more
generic and extended framework, usable in multiple settings.
With the support of ANNs, the framework considers incoming
measurements as time series (e.g., temperature values over
time), predicting future values in the series. Each received
measurement goes through a set of blocks to determine if
it is an outlier, to estimate its quality, and, if considered an
outlier, to replace it by a corrected measurement. Our frame-
work was designed for online processing of incoming sensor
measurements, and implemented with real-time concerns in
mind, to reduce the time taken to process each incoming
measurement and avoid arbitrarily large processing times. It
offers capabilities to deal with a single sensor (data source) or
multiple sensors providing correlated measurements. In fact,
the ability to detect outliers can be significantly improved
when correlated data sources are available. Measurements
can be correlated if different variables have an impact within
one another, e.g, salinity levels can change temperature levels.
If more than one data source is available, some events can
be explained as incidents. For instance, if it is detected a
change in water levels, this change will also be detected in
other sensors. However, if an event is detected by only one
data source, it is most likely that that event is an anomaly.

2 Related Work
There have been many investigations and many different
projects using WSNs. However, there is little work on the
detection and correction of anomalies in sensor data, which
can be frequent when considering deployments affected by
harsh environmental conditions. We reviewed previous work
done by different authors and the current state-of-the-art in
the context of this work for each topic.

Ensuring that sensor data is of good quality, is of great impor-
tance to applications that rely on these types of data [3]. As
discussed in the survey from Hui Yie Teh et al. [4], artificial
intelligence (AI) and machine learning (ML) solutions are
now commonly used to ensure data quality despite sensor and
network failures. In [4], Hui Yie Teh et al. made a literature
search for keywords related to these topics. Table 1 shows the
most frequent types of sensor data errors mentioned in papers
and the number of times they were mentioned.

From these values, it is clear that outlier and missing data
errors are those that gather comparatively more attention in
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Table 1: Most common types of errors in sensor data [4] and
number of papers mentioning them.

Type of error Total

Outliers 32
Missing Data 16

Bias 12
Drift 12

Type of error Total

Noise 8
Constant value 7

Uncertainty 6
Stuck-at-zero 6

the literature, perhaps because they are prominent in real de-
ployments. These are the two types of errors that we address
with ANNODE+.

As previously stated, ML methods are commonly used to
detect anomalies in sensor data. Several different methods,
including supervised and unsupervised ones, can be used to
detect anomalies based on past data. In [4], an analysis of
the most common ML methods for error detection was also
done, being the three most prominent ones the Principal Com-
ponent Analysis (PCA), Artificial Neural Networks (ANNs)
and Ensemble Classifiers. Our framework uses ANNs for
this process, more specifically MultiLayer Perceptron Neural
Networks (MLP).

In addition to detecting outliers, ANNODE+ also detects
missing data. This is done only for periodic data, assuming
that the period is known.

In [5], a similar experience was made in Aveiro, Portugal.
The authors used and adapted a custom-deployment based
forecasting platform to the Portuguese coast. This allowed
to create numerical models to provide forecasts of sea level
variations, currents, temperatures, etc. However, they also
recognize that further research and solutions to deal with data
errors are needed when considering sensor deployments in
harsh environments. Furthermore, they refer to the possibility
of exploiting existing temporal and spatial correlations in
sensor data.

To understand the relevance of correlations between data
from different sensors, several ML methods were considered
in [6] to forecast long-term and short-term water demand
when considering variables such as rain, hour of the day
and air temperature. It was possible to conclude that using
multiple correlated variables helps improving the accuracy
of forecasts, with some variables having more impact on the
achieved results.

In summary, the ANNODE+ framework is designed to detect
and correct the most common sensor data errors. Additionally,
the framework includes mechanisms, based on timers, to deal
with missing data and exploit data correlations that may help
with the predictive model and the detection of anomalies.

3 ANNODE+ Architecture
The framework’s architecture is illustrated in figures 1 and
2. It is composed of two blocks: the training and execution
blocks. The training block corresponds to an offline execu-
tion for models’ training. This training step is supported by
a dataset containing sufficient information to represent all

the main characteristics and dynamics of the variable being
modelled (e.g., represent the seasonality present in the real
phenomenon). The user must prepare a configuration file
with all the training requirements, such as the number of sen-
sors, their characteristics (e.g., sampling period), and data
characteristics (e.g., representative period).

The characteristics of the MultiLayer Perceptron (MLP) neu-
ral networks trained in the framework are the same as those
proposed in the ANNODE framework, which are described
in [1], and consist of two hidden layers with 20 neurons in the
first layer and 15 in the second, using a hyperbolic tangent
sigmoid (tansig) as the activation function.

Models are trained using datasets that must be provided by
the user, which must have been previously collected and
must include only data considered correct. Annotating or
cleaning training data is a typical requirement when using
ML methods. When data from multiple correlated sensors
is available, several models are created, corresponding to
different combinations of sensors. In fact, to predict the next
measurement of a sensor, it is possible to use a model that was
trained using only data from that sensor (exploiting temporal
correlation), or using a model combining data from multiple
neighbor sensors (exploiting spatial correlation).

After training the ANN models, the framework is ready to
run (online execution). The Execution block follows a multi-
service implementation approach. Currently, there are three
primary services: Communication, Omission detection and
Processing. The Communication service is responsible for
receiving sensor data, for identifying its source sensor, and
for inserting these data in that sensor measurements queue,
which is shared with the Omission detection service.

The Omission detection service is a multi-thread service with
a timer thread for each sensor from which periodic data is
to be received. Considering that each sensor s sends a new
measurement with period Ps, a corresponding timer is set to
expire after Ps + δ, where δ corresponds to the jitter assumed
for the measurement reception instant. If no measurement
from that sensor is received before Ps + δ, an omission is
detected and a special value (like a NaN) is inserted in the
sensor measurements queue. By considering the channel jitter,
the probability of wrongly detecting an omission is reduced
to the probability of considering a wrong (too small) jitter.

Lastly, there is the Processing service. This service is trig-
gered by new incoming measurements, stored in each sensor’s
measurements queue. However, actual processing only starts
after a certain number of measurements have been received,
covering an entire representative period of the physical pro-
cess being monitored (e.g., 12 hours for sea water level).
When this condition is fulfilled, actual processing is executed
for every new incoming measurement. Firstly, measurements
are temporally aligned, to match the alignments used during
model training. Then, input vectors are built from the stored
and aligned measurements, to be fed to the relevant ANN
prediction models. If correlated sensors are available, then
the following models (which have been previously trained)
are used to generate forecasts:
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Figure 2: ANNODE+ Architecture - Execution Block

1. A model that only uses data from the target sensor whose
measurement is being processed (temporal correlation);

2. A model that uses data from the target sensor and its
neighbours (temporal and spatial correlation);

3. A model that uses data only from the target sensor neigh-
bours (spatial correlation only).

The benefit of using these multiple forecasts is to be able to
distinguish real environmental events (even if they look like
outliers) from real outliers (only affecting the target sensor,
but not the neighbor ones). It is then possible to check the
correctness of the received measurement, comparing it with
the generated forecasts. In fact, given that sensor data can be
affected by different kinds of errors, it is at this point of the
processing chain that it is possible to determine if some failure
may have happened, leading to those different errors. While
ANNODE+ is only detecting outliers, it may be extended
in future work with new failure detection blocks to detect
data drifts and noise. When some failure is detected (either

missing data or outlier), then the received measurement (or the
special NaN value) is replaced by an average of the calculated
forecasts.

In addition to detecting failures, it is also possible to calculate
the quality of the received measurement. When the difference
between the received measurement and the forecasts provided
by the models is small, then the quality is high.

4 Results
To evaluate our ANNODE+ implementation, we used a
dataset with temperature measurements collected from a sen-
sor in the Seixal Bay, in Portugal. We divided this dataset in
two parts, containing data from different temporal periods.
One part was used to train a single model (in this initial eval-
uation we only considered one model, exploiting temporal
correlations) and the other was used to test the framework.
Training a single model took about one full day on our hard-
ware with 16GB of RAM and an AMD Ryzen 5 3500X CPU.
Given our objective of checking the ability of the framework
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to detect outliers and missing values, we randomly injected
these anomalies in the second part of the dataset, by changing
some measurements and by removing some of them from the
temporal series.
To emulate a real online usage of the framework, we built a
framework client that plays the role of a sensor and sends a
new measurement (taken from the dataset) to the framework
with a period of 500ms (except when injecting an omission).
We observed very positive results, with the framework replac-
ing the injected outliers with their respective predictions. As
stated before, when training is done with a sufficiently large
and representative dataset, the obtained predictions are very
accurate. We were also able to detect omissions, as expected,
and correctly replacing the missing measurements with the
values predicted by the ANN model.
Given the need to execute the full processing chain before the
arrival of a new measurement, we also measured the response
time of the framework, from the moment a new measurement
arrives until it is fully processed, to assess the achievable per-
formance and potential capacity of the framework in handling
incoming data. The ability to ensure a bounded execution
time necessarily depends on the underlying execution environ-
ment (namely the operating system being used), but having
an idea of the time needed to process a single measurement is
already important to make sure that the framework is not over-
loaded. In our experiments we also measured the CPU load,
and we considered the execution of the framework with and
without background load. The background load was created
by running the framework for model training.

Table 2: Run-time cost of the algorithm for one measurement.

Without load Total

Max time (ms) 165
Avg time (ms) 52
Best time (ms) 46
Avg CPU load 11%

With load Total

Max time (ms) 153
Avg time (ms) 54
Best time (ms) 49
Avg CPU load 42%

Table 2 provides the collected performance measurements.
The results show that in this case it would be possible to fully
process each new measurement in about 50ms (in average),
even considering a loaded CPU. For most applications per-
forming environmental monitoring, this kind of performance
is sufficiently good to allow the framework to be used for
online processing of incoming measurements, even if mea-
surements from several sensors have to be processed.

5 Conclusion and Future Work
The preliminary results show very positive outcomes. How-
ever, we aim to complete and test the implementation of ANN-
ODE+ to handle more than one data source, and improve the

calculation of the measurement quality using correlations be-
tween sensors. We also plan on improving the training block
by automating some parts of the training process.

Moving away from applications in the environmental mon-
itoring area, we plan to use the framework in a use case of
arc detection in DC distribution cabinets, in the context of the
VEDLIoT EU project (https://vedliot.eu). In this case there is
a stream of sensor data being continually produced and sent
in batches to the framework, while timing requirements for
the detection of arcs (which will create data that will look like
outlier in relation to normal data) are very stringent, in the
order of a few milliseconds. A different execution platform
will be required, with more resources and making it possible
to satisfy timeliness requirements.

Acknowledgments
This work was supported by FCT through funding of the
AQUAMON project (ref. PTDC/CCI-COM/30142/2017) and
the LASIGE Research Unit (ref. UIDB/00408/2020 and ref.
UIDP/00408/2020), and by the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 957197 (VEDLIoT project).

References
[1] G. Jesus, A. Casimiro, and A. Oliveira, “Using machine

learning for dependable outlier detection in environmen-
tal monitoring systems,” ACM Trans. Cyber-Phys. Syst.,
vol. 5, jul 2021.

[2] B. O’Flyrm, R. Martinez, J. Cleary, C. Slater, F. Regan,
D. Diamond, and H. Murphy, “Smartcoast: A wireless
sensor network for water quality monitoring,” pp. 815 –
816, 11 2007.

[3] G. Jesus, A. Casimiro, and A. Oliveira, “A survey on
data quality for dependable monitoring in wireless sensor
networks,” Sensors, vol. 17, no. 9, p. 2010, 2017.

[4] H. Teh, A. Kempa-Liehr, and K. Wang, “Sensor data
quality: a systematic review,” Journal of Big Data, vol. 7,
02 2020.

[5] J. Gomes, M. Rodrigues, A. Azevedo, G. Jesus, J. Ro-
geiro, and A. Oliveira, “Managing a coastal sensors
network in a nowcast-forecast information system,” in
2013 Eighth International Conference on Broadband and
Wireless Computing, Communication and Applications,
pp. 518–523, IEEE, 2013.

[6] B. Brentan, G. Meirelles, M. Herrera, E. Luvizotto Jr, and
J. Izquierdo, “Correlation analysis of water demand and
predictive variables for short-term forecasting models,”
Mathematical Problems in Engineering, vol. 2017, 12
2017.

Volume 43, Number 2, June 2022 Ada User Jour na l




